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TIDAL ESTIMATION IN THE PACIFIC WITH APPLICATION TO SEASAT ALTIMETRY 

INTRODUCTION 

This is the second report of an investigation concerning the application of Proudman functions to the es- 
timation of tidal components in the world's oceans. The first report presented results obtained in the Atlantic- 
Indian Oceans (Sanchez et al., 1986). 

This investigation focuses on the Pacific basin and incorporates some aspects which were'Iacking in the 
previous investigation in the Atlantic-Indian Oceans. 

The application of satellite altimetry to the investigation of dynamical phenomena in the oceans is be- 
coming a well-defined engineering and scientific field. The ocean tides produced by the gravitational attrac- 
tion of the moon and the sun constitute an interesting and important aspect of these investigations. The dy- 
namical response of the oceans to  the astronomical forcing functions is not an equilibrium one. This is easily 
understood in the context of the normal modes of the fluid basins involved, which have periodicities spanning 
the range of the forcing functions. This is certainly true for the gravitational normal modes modified by rota- 
tion, in relation to  the diurnal and semidiurnal components of the tidal potential. The rotational modes modi- 
fied by gravity have longer periods; they might play a role in the response of the oceans to  seasonal winds and 
other phenomena associated with ocean circulation. 

The frequency spectrum and space structure of the normal modes of the world's oceans are determined 
by the configuration of their boundaries and their bathymetry, as well as by the physical properties of the 
fluid, such as density and viscosity. The actual detection of the free periods of oscillation of the oceans from 
the analysis of available data remains an open area for investigation. The reader is referred to  Platzman, et al. 
(1981), and to Luther (1983), for excellent discussions of this problem, including further references. The 
numerical computation of normal modes for mathematical models of the ocean basins is an area where con- 
tributions have been made by many investigators. The following is not intended to  be an exhaustive historical 
review, but only a sampling of the literature: the theoretical papers by Longuet-Higgins (1 968), Longuet- 
Higgins and Pond ( 1970), and Christensen (1 973), which dealt with the analytical eigensolutions of the Laplace 
Tidal Equations (LTE) for rotating spherical and hemispherical regions, Gotlib and Kagan (1 980, 1982) 
reconstructed the spatial structure of the K1 and 01 tides from eight eigenfunctions of the LTE with periods 
in the range 17-30 h; they used 639 data points from coastal and island stations. Webb (1980) studied the role 
of resonance and friction in the tidal response and energy dissipation. He used a flat-bottomed, hemispherical 
ocean, centered at the Equator. Platzman (1978, 1984), and Platzman, et al. (1981), computed a range of 
normal modes for the world oceans and used them to synthesize some of the diurnal and semidiurnal tides. In 
a more limited geographical scale, Wubber and Krauss (1979) computed periods and structures of the gravita- 
tional free oscillations in the Baltic Sea; Schwab and Rao (1983) computed several of the lowest gravitational 
normal modes in the Mediterranean-Adriatic system. 

The objectives of this investigation are not limited to the numerical computation of normal modes; the 
main goal is the exploration of the applicability of the Proudman functions as a basis for the analysis of tidal 
data. However, the computation of the modes is still considered to  be of sufficient scientific interest in itself 
t o  warrant the partial presentation of the results. In addition, the computation of the forced solutions and the 
potential energy spectra for the different tidal components contribute to  the understanding of the method 
and lends unity to  its presentation. The detailed mathematical formulation of the method can be found in 
previous publications (Sanchez et al., 1985, 1986). The theoretical foundation is Proudman's theory ( 19 18) as 
formulated by Rao (1966). The theory provides the formalism for calculation of the gravitational (first class) 
modes and the rotational (second class or Rossby wave) normal modes of irregularly-shaped basins with realis- 
tic bathymetry. 

The method requires the solution of two elliptic partial differential equations with second-order oper- 
ators, which are simpler than the tidal operator. The boundary conditions correspond to  vanishing of the 
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stream function and normal derivative of the velocity potential. The elliptic operators are numerically r e p  
resented in finite difference form; the grid used is a Richardson lattice, which preserves self-adjointness. The 
solutions yield the velocity and surface height fields in terms of orthogonal functions with time-dependent 
coefficients. These functions are then substituted into Laplace's tidal equations: if the homogeneous equa- 
tions are used, one obtains the normal modes; if the forcing terms are included, then the forced solution is 
obtained. In both cases, the solution is obtained numerically. The surface height field is only dependent on 
the velocity potential orthogonal functions, also referred to  as Proudman functions. They correspond to  the 
gravitational normal modes at zero rotation. The expansion coefficients of these functions can be estimated 
in a least-squares sense from available selected tidal measurements. It is possible to  use the normal modes as 
a basis for the interpolation (Woodworth and Cartwnght, 1986). We believe the adoption of the Proudman 
functions as a basis offers the advantage of simplicity, since to  compute these functions, it is only neces- 
sary to  solve the equation 

v hV4, = - A,#, 

subject to  the boundary condition 

where 

h: 

$T : 
A,, : corresponding eigenvalue 

variable depth of the fluid in equilibrium 
eigenfunctions of the velocity potential 

gradient in the direction normal to  the boundary. -: a 47 
an 

Besides simplicity, the Proudman functions offer the advantage of being free of the dynamic prejudice 
introduced by factors such as friction. Also, they are dependent only on the shape and depth of the partic- 
lar basin, so they have to  be computed only once when analyzing different tidal constituents. 

NORMAL MODES AND FORCED SOLUTIONS 

The numerical solutions were obtained by means of finite differences using a 6" x 6" Richardson lat- 
tice. There are 5 10 velocity potential points (4) and 455 stream function points ( 9 )  in the Pacific basin. The 
eigenfunctions of the velocity potential, or Proudman functions, correspond to  the gravitational normal 
modes of the basin at zero rotation. The periods of oscillation of the slowest modes are given in the first 
column of Table 1. These modes also have the largest space scales. The second column of Table 1 exhibits the 
periods of the slowest 30 gravitational modes modified by rotation. They all have kinetic:potential energy 
ratios close to  unity, as shown in the last column. The normal mode solution was obtained by including the 
lowest 150 eigenfunctions from each field (4~ and $). Platzman (1978) computed normal modes for the world 
oceans using a finite-element technique with triangular grid elements having an avenge area equal to that of a 
4.5' equatorial square. A direct comparison with his results must consider the fact that our model has arti- 
ficial boundaries across the Drake Passage and the Tasman Plateau; a direct consequence of these barriers is 
the impossibility of obtaining any circulation around Antarctica. However, some similarities in the results of 
these separate investigations are clearly discernible. Platzman's mode 16 with natural period 28.7 hours 
(Platzman, et al., 1981), which is a combination of a Pacific 1/2 wave and an Antarctic Kelvin wave, bears a 
strong spatial resemblance to  our second gravitational mode with a period of 32.82 hours. The correspondence 
is verified still further by Platzman's comments concerning the configuration of this mode at zero rotation and 
its period of 29.9 hours when using a model of the Pacific Ocean alone. Figures l a  and 1 b show the Proudman 
function, and the corresponding normal mode obtained with our model. The Proudman function plot shows 
the contours of equal amplitude (normalized to  maximum value = 100). The contour of zero amplitude is 
the nodal line; the nodal lines remain fixed in space and the nonrotating modes have the nature of standing 
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Table 1. Gravitational Modes 

Period (hr) 
Nonrotational Rotational 

43.9 1 
29.99 
26.37 
22.11 
20.63 
18.58 
17.93 
16.47 
16.10 
15.77 
14.53 
14.13 
13.18 
12.69 
12.46 
12.09 
11.66 
11.06 
10.92 
10.53 
10.09 
9.73 
9.5 1 
9.49 
9.19 
9.01 
8.80 
8.68 
8.43 
8.40 

43.94 
32.82 
25.16 
21.61 
20.76 
18.65 
16.70 
16.12 
15.33 
15.00 
14.21 
13.77 
12.60 
12.26 
11.78 
11.57 
11.28 
10.84 
10.6 1 
10.24 
9.95 
9.38 
9.33 
9.10 
8.99 
8.79 
8.66 
8.39 
8.2 1 
8.09 

Energy Ratio 
(Kinetic/Potential) 

0.97 
0.98 
1.01 
0.92 
1.01 
1.06 
0.99 
1.04 
1 .oo 
1.16 
1.33 
1.14 
1 io0 
1 .08 
1.23 
1.15 
1.17 
1.18 
1.07 
1.05 
1.05 
1.06 
1.17 
1.15 
1.12 
1 .08 
1.10 
1.07 
1.08 
1.12 

waves. In the normal mode plot, the contours of equal amplitude and phase are given by the solid and dashed 
lines; the arrows indicate the sense of progression for high and low water. Platzman’s mode 19 with a period 
of 21.2 hours resembles our third gravitational mode with four cyclonic amphidromes and the period length- 
ened to 25.16 hours. Figures 2a and 2b refer t o  this mode. As the structures of the modes become finer, and 
their periods shorter, it becomes harder to establish clear cut one-to-one correspondences between the results 
of the two models. 

The forced solutions yield the amplitude and phase fields for the various tidal components. In the 
context of this investigation, the forced solutions are frictionless, without self-attraction or tidal loading 
effects. Figures 3 and 4 show the tidal solutions obtained for the M2 and 01 components. It is interesting to  
note that the M2 amphidromic pattern in the northeast Pacific resembles that obtained by Brown and Hutch- 
inson (1 98 1) from analysis of SEASAT and GEOS-3 altimetry data, although the resemblance of both to 
Schwiderski’s (1 983) solution, Figure 5 ,  is not as good. 

Tables 2 and 3 show the periods and potential energy percentages of the 10 most energetic modes for 
each of the diurnal and semidiurnal components. The mode with a period of 11.78 hours is the most en- 
ergetic for the M2 and N2 components. For the S2 and K2 solutions, the most energetic mode has a period 
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Figure la. Proudman function with period = 29.99 hours. Contours of aual  amplitude normalized to maximum value = 100. 
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Figure lb. Normal mode with period = 32.82 hours. Contours of equal amplitude and phase. 
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Figure 2a. Proudman function with period = 26.37 hours. Contours of equal amplitude normalized to maximum value = 100. 

I I I I I I 1 
120 150 180 210 240 270 300 

Figure 2b. Normal mode with period * 25.16 hours. Contours of equal amplitude and phase. 
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Figure 3. M, theoretical solution obtained from the lowest 150 modes. Contours of equal amplitude (cm) and phase. 
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Figure 4. 0, theoretical solution obtained from the lowest 150 modes. Contours of equal amplitude (cm) and phase. 
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Rank 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Rank 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

M2 
Period( hr) 

11.78 
12.26 
11.57 
11.28 
13.77 
10.6 1 
15.00 
10.24 
10.84 
16.12 

K1 
Period( hr) 

16.70 
21.61 
20.76 
16.12 
14.21 
13.77 
12.26 
43.94 
18.65 
25.16 

Table 2. Potential Energy Spectrum for the Semidiurnal Components 

s2 N2 K2 
P.E.(%) Period(hr) P.E.(%) Period(hr) P.E.(%) Period(hr) 

19.76 11.57 
17.34 11.28 
14.33 10.84 
11.93 12.60 
5.47 12.26 
4.86 11.78 
4.86 10.61 
2.63 8.79 
1.80 9.38 
1.78 8.99 

27.47 
19.38 
13.04 
12.1 1 
7.32 
3.06 
3.05 
2.7 1 
2.09 
1.1 1 

11.78 
13.77 
11.28 
9.38 
12.60 
16.12 
’ 9.10 
10.84 
10.6 1 
8.99 

43.5 
12.03 
9.15 
9.1 1 
4.64 
4.1 1 
2.07 
1.75 
1.71 
1.45 

11.57 
11.28 
12.60 
10.84 
12.26 
11.78 
8.79 
10.6 1 
9.38 
13.77 

Table 3. Potential Energy Spectrum for the Semidiurnal Components 

26.64 
20.13 
18.37 
10.36 
4.7 1 

3.26 
3.20 
2.62 
1.89 
1.51 

25.16 
20.76 
16.70 
18.65 
15.00 
12.60 
13.77 
21.61 
12.26 
43.94 

37.90 
11.26 
8.60 
8.03 
7.42 
4.79 
3.79 
3.08 
2.65 
2.19 

16.70 
21.61 
20.76 
16.12 
14.2 1 
43.94 
12.26 
13.77 
25.16 
18.65 

25.07 
2 1.34 
17.34 
11.06 
4.76 
3.14 
3.07 
3.04 
2.20 
1.61 

25.16 
16.70 
20.76 
18.65 
15.00 
13.77 
12.60 
12.26 
43.94 
14.21 

P.E.(%) 

24.18 
17.34 
15.45 
12.05 
9.14 
3.83 
2.55 
2.52 
1.78 
1.56 

P. E.(%) 

3 1.82 
15.04 
12.07 
6.52 
5.96 
5.50 
5.22 
4.8 1 

3.39 
2.89 

of 1 1.57 hours. The energy percentages given in the table are relative to  the total (100 percent) contributed 
by the 150 modes in the solution. For the diurnal components, the most important modes are the ones with 
periods of 16.70 hours (K1 and Pi), and 25.16 hours (01 and Q1). The rms amplitudes computed for the 
various components are as follows: M2 (63.9 cm), N2 (25.2 cm), S2 (24.2 cm), K 2  (6.9 cm), K1 (10.9 cm), 
Pi (3.6 cm), 01 (8.3 cm), Q1 (1.1 cm). 
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FITTING SCHWIDERSKI’S NUMERICAL SOLUTIONS 

Schwiderski’s numerical solutions to Laplace’s tidal equations, constrained to  fit all the measured 
coastal data (Schwiderski et seq., 1983) provide a way of testing the efficiency of the Proudman function 
represen tation, vis-a-vis a spherical harmonic expansion approach. Schwiderski’s amplitudes and phases for 
the various components have been used as data at the 5 10 velocity potential points of the grid. Figures Sa 
and 5b show Schwiderski’s solutions for the M2 and 01 tidal components. The tidal fields were then fit by 
least squares. first in terms of Proudman functions, then in terms of spherical harmonics. It is expected that 
the Proudman functions will yield better results when fitting diurnal and semidiurnal components which 
have periods in the range spanned by the gravitational modes. However, the expected outcome is not as clear 
when fitting tidal components with long periods. In that context, the lunar fortnightly (Mf). the lunar 
monthly (Mm), and the solar semiannual (S,) have been included in the tests. The results are given in Table 
4. The second column lists the rms for the amplitude of the various numerical solutions: the third and fourth 
columns give the results of the fits. The rms of fit in the last two columns of Table 4 is defined as follows: 

where AEi denotes the amplitude of the estimated solution at point i, and ASi stands for the amplitude from 
Schwiderski’s solution. As expected, the Proudman functions perform better (Le., smaller rms) for the 
diurnal and semidiurnal components; the M2 component can be estimated better with 150 Proudman func- 
tions than with a 14th degree spherical harmonic expansion involving 1.5 times the number of coefficients. 
The fortnightly and lunar monthly were estimated about equally by both methods, but the spherical har- 
monics give better results for the estimation of the solar semiannual component. In this last case, a 9th 
degree expansion (200 coefficients) yields better results than the fit using 450 Proudman functions. 

I The potential energy spectra corresponding to  the fits in Table 4 are partially given in Table 5 for the 
M 2  and 01 components, for the cases in which 150 Proudman functions were used. Comparing those with 
the results given in Tables 2 and 3 for the theoretical solutions, one sees some similarities and some differ- 
ences. Seven out of the first ten modes, and two out of the first five, are common to  both M2 fits. In the 
case of 01, eight out of the first ten, and three out of the first five, are common to  both fits. Figures 6a and 
6b show the solutions for M2 and 01 when fitting Schwiderski’s solutions with 200 Proudman functions. 
Schwiderski’s numerical solutions were also fitted using a reduced data set, consisting of 362 points covering 
the central part of the Pacific Ocean (Figure 9a). These are the points used to analyze the SEASAT altimetry 
data as explained in the next sections. Schwiderski’s M2 tidal map was fitted using the first 90 Proudman 
functions (in order of decreasing space scale and length of period); an r m s  of fit (over the 362 data points) 
equal to 3.10 cm was obtained. Schwiderski’s 01 map was fitted using the first 50 Proudman functions; the 
rms of fit obtained is equal to 0.6 cm. The coefficients derived from the fits above were used to  compute the 
potential energy spectrum, and the results are given in Table 6. The potential energy percentages are based 
on a 100 percent total using 90 modes for M2 and 50 modes for 01. For comparison, the M2 and 0 I theo- 
retical solutions obtained by using 150 modes were also fitted. The Corresponding rms of fit were 0.57 
cm for M2 (using 90 functions) and 0.17 for 01 (using 50 functions): both over the 362-point data set. The 
corresponding potential energy spectra are also given in Table 6. The first thing to  notice in these results 
is the preponderance of one mode in all cases-the mode with a rotational period of 21.61 hours. The cor- 
responding Proudman function has a nonrotational period of  22.1 1 hours. This mode is especially impor- 
tant when fitting the 01 component; it then accounts for more than 50 percent of the potential energy. In 

tial energy spectrum although they are not identical. Six out of the first ten, and three out of the first five, 
are common in the fits to M2; seven out of the first ten are common in the 01 fits. Also, the first three are 
common, and in the same order, in the fits to 01. 

I 
I general, the fits to Schwiderski’s solutions and to the theoretical solutions show similar patterns in the poten- 
I 
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Table 4. Fitting Schwidertki's Numerical Solutions Using Proudman Functions 
and Spherical Harmonics. RMS Values in cm. 

Tidal 
Component 

M2 

s2 

K1  

01 

Mf 

Mm 

Rank 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

RMS Amplitude, 
Sch widerski 

33.82 

11.67 

17.16 

12.19 

1.21 

0.90 

1.52 

Proudman functions 
RMS of Fit (no. 
of functions) 

4.40 ( 1 50) 
3.54 (200) 
1.03 (450) 

1.29 (200) 
0.66 (450) 

2.48 (200) 
1.17 (450) 

2.01 (150) 
1.74 (200) 
0.71 (450) 

0.18 (200) 
0.13 (450) 

0.13 (200) 
0.05 (450) 

0.43 (200) 
0.39 (450) 

Spherical Harmonics 
RMS of Fit (degree 

of expansion) 

8.81 (9th) 
5.56 (14th) 

2.98 (9th) 
1.62 (14th) 

4.40 (9th) 
2.91 (14th) 

3.17 (9th) 
2.14 (14th) 

0.22 (9th) 
0.15 (14th) 

0.21 (9th) 
0.14 (14th) 

0.30 (9th) 
0.17 (14th) 

Table 5. Potential Energy Spectrum for Schwiderrki's M2 and 0, Using 
Fits to 510 Points 

Period (hr) M2 P.E. (%) Period (hr) O1 P.E.(%) 

11.57 
12.26 
12.60 
10.84 
10.61 
15.00 
16.70 
11.78 
15.33 
11.28 

22.10 
12.87 
6.08 
4.45 
4.26 
4.08 
4.03 
2.53 
2.42 
2.20 

18.65 
25.16 
16.70 
13.77 
32.82 
16.12 
12.26 
43.94 
12.60 
21.61 

17.90 
15.66 
13.73 
8.29 
7.27 
5.73 
3.61 
2.74 
2.68 
2.47 
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Figure 5a. Contours of amplitude (solid lines, centimeters) and Greenwich phase Isg at 96' intervals (broken lines) from 
Schwiderski's (1983) global model of the M2 tide constrained by coastal tidegauge data. Arrows, attached to 0' 
phase contours, indicate the sense of phase progression around amphidromes. 
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Figure 5b. Similar to 5a, but for the O1 tide. 
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Figure &. A synthesis of 200 Proudman functions with coefficients computed for least-squares fit to Ma data corresponding 
to 5a. Notation as in Figure 5a.. 
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Figure 6b. Similar to 6a, but for 0, data as mapped in Figure 5b. 
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Rank 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Table 6. Potential Energy Spectrum for M2 and 0, Using Fits to 362 Data Points 

M2 (Schwiderski) M2 (theoretical) 0 1 (Schwiderski) 0 (theoretical) 
Period(hr) P.E.(%) Period(hr) P.E.(%) Period(hr) P.E.(%) Period(hr) P.E.(%) 

21.61 
9.95 

11.78 
14.21 
9.33 

10.6 1 
25.16 
8.66 

30.76 
10.24 

15.56 
11.36 
10.22 
8.24 
5.47 
4.58 
4.56 
3.59 
3.52 
2.89 

21.61 
20.76 

9.95 
11.78 
18.65 
12.60 
1 0.84 
13.77 
10.6 1 
14.21 

19.35 
14.60 
8.98 
6.54 
4.45 
3.95 
3.7 1 
3.39 
3.07 
2.70 

21.61 
20.76 
25.16 
16.70 
12.60 
32.82 
18.65 
10.61 
9.10 

11.28 

56.76 
20.75 
3.43 
2.76 
2.24 
1.87 
1.58 
1.52 
1.02 
0.97 

21.61 
20.76 
25.16 
18.65 
16.12 
32.82 
15.00 
15.33 
11.28 
10.6 1 

57.77 
18.80 
9.57 
3.69 
1.70 
0.97 
0.87 
0.64 
0.57 
0.55 

TIDAL ANALYSIS OF SEASAT ALTIMETRY 

Expansion in terms of a proper set of spatial basis functions is, in principle, the best way of extracting 
the tidal field from sea surface topography measured by a satellite altimeter. Attempts have been made to 
define the M2 tide in the global ocean by analysis of the altimetry from SEASAT using expansions of spheri- 
cal harmonics (Mazzega, 1985) and of computed normal modes (Woodworth and Cartwright, 1986), both 
with some degree of success and with some limitations. The limitation of spherical harmonics is that, since 
data noise severely limits the order of expansion, it cannot properly model the finer tidal structure near the 
edges of the ocean basins, nor the abrupt transition from one ocean basin to another across a narrow land- 
mass (e.g., Central America). Computed normal modes of oscillation correctly model the requirements of 
ocean basin geometry, but are limited by the physical approximations (e.g., lack of friction) built into their 
formulation. Both Mazzega (1985) and Woodworth and Cartwright (1986) achieved better results by separat- 
ing the solutions for different ocean basins at the expense of discontinuity across their common boundaries. 

The set of Proudman functions for the Pacific Ocean described in the first sections of this paper should 
provide a better alternative to  both spherical harmonics and normal modes, because they em body the correct 
requirements of mass conservation and boundary flow without imposing any artificial dynamic constraints 
in their formulation. An expansion of the tidal field in Proudman functions may, therefore, embody any 
reasonable regime of linear internal dissipation, which is important in tidal theory. The principal limitation 
is the implied lack of energy transmission across the model boundaries, but this is not considered to be 
very great in the seas bordering the Pacific Ocean. [The Bering Sea, at one time considered to be a major 
sink of M2 tidal energy, has since been shown to  be insignificant in this respect (Sundemann. 1977)l. 

In applying Proudman functions to analyze SEASAT altimetry, we restricted the analyisis to an in- 
terior zone of the Pacific (Figures 9a, b) which covers about three-quarters of the total area used for comput- 
ing the functions, in order not to confuse the fitting by fine tidal structure near the coastal boundaries. In 
particular, the difficult tidal area around New Zealand has been excluded, as well as regions of high meso- 
scale activity in the Kuroshio Current off Japan and at high southern latitudes, (Cheney. Marsh and Beck- 
ley, 1983). The loss of ideal orthogonality of the set of functions over the smaller area is not too serious, and 
in any case, the area of integration is weighted by the disposition of valid data along the satellite's ground- 
tracks. The use of nonzero cross-products between members of the set is a normal part of the analysis pro- 
cedure. 

The Altimeter Data Set 

We used a file of altimetric Sea Surface Heights (SSH) and related data specially prepared from the 
original GDR tapes by Oscar L. Colombo of EG&G for purposes such as tidal analysis. All data were taken 

12 



from the ‘3day repeat’ phase of the SEASAT mission (1978, Sept. 13 - Oct. IO), here reduced to the period 
Sept. 15 - Oct. 9, as far as roughly-continuous data series are concerned, apart from some gaps of a few 
hours. The pattern of ground-tracks for this period, repeated every 3 days, with a minimum separation of 
8.4’ in longitude between parallel tracks, has been reproduced many times; see, for example, Figure 4 of 
Brown and Hutchinson ( 1 98 1 ). 

The original 1s-I data had been smoothed by Colombo to  roughly 10s intervals corresponding to 
about 70 km of ground-track, and adjusted to a pre-set grid of earth-positions. The altimeter heights 
along tracks which, owing t o  a slight drift in the orbit, did not quite pass over the pre-set positions, were 
corrected by an adjustment in height proportional to the cross-track slope of the geoid in the region con- 
cerned. All data which, for a variety of technical reasons, showed gross departure from consecutive smooth- 
ness were eliminated from the data set. 

The computed orbit used to correct the altimeter heights to SSH was the Goddard Space Flight Cen- 
ter’s PGSS4 orbit, which was more accurate than any other computations for SEASAT prior to  1987. Apart 
from this, a standard suite of algorithms for the correction of radar path-length had been applied to the data 
at an early stage of processing. These corrections included subtraction of the ‘body-tide’ of the earth’s 
crust and a computed ‘ocean tide’ from the models of Schwiderski et seq. 1980. Since we are concerned 
with analysis of the ocean tide signal, we restored it by adding to the given SSH data exactly the same fig- 
ures for ‘ocean tide’ which had previously been subtracted. The geocentric tidal signal contained in the 
adjusted SSH consisted, therefore, of the ocean tide relative to earth as normally recorded, slightly modi- 
fied by the ‘load tide’, o r  ocean-induced deformation of the ocean floor, (Parke and Hendershott, 1980). 

Corrections for Geoid and Orbit Error 

The adjusted SSH, as described above, is dominated by the geoid signal of order f 50 m and to a lesser, 
but important, extent by the error in the computed orbit, of order f 1 m. These have to  be subtracted by 
some means for oceanographic analysis. The repeated track provides the most convenient means of removing 
at least the geographically-invariant part of the SSH, consisting of the geoid, though somewhat distorted by 
the quasi-permament dynamic ocean topography. A commonly-employed method is to reduce each recorded 
height SSH (e, A ,  t) at  time t to  the anomaly 

DH ( e ,  A ,  t )  = SSH( e ,  h ,  t ) -  MSH( e . A  ) (4.1 ) 

where MSH (e, A )  is the mean of all recorded heights along repeated tracks over the position with latitude 
8 ,  longitude X. This is a good method in principle when applied to a very long record. but in the case of SEA- 
SAT, with < 8 repeated passes over each section of track, frequent irregular fallout of some data values intro- 
duces noise in MSH, owing to  the irregular distribution of orbit errors among the eight possible passes. Such 
noise largely accounts for the irregularity of the histograms of anomalies shown in Figure 6 of Woodworth 
and Cartwright ( 1986). 

We have avoided such irregularity in the present study by working in terms of tlie ‘running difference’ 

A H ( 0  , A , t )  = S S H ( e , A , t ) - S S H ( e , A  , t + K T ) ,  (4.2) 

where T closely approximates the mean repeat period, 3.0089 days in the case of SEASAT (the exact 
value being determined by exact repeatability of  O,A), and K is an arbitrary small integer. In fact, K was set 
equal to 2, because the time difference of 2T conveniently matches the 6d duration of the consecutive arc- 
lengths used for computation of the PGSS4 orbit. Whenever either of the two variables on the right of (4.2) 
was missing or invalidated, the corresponding value of AH was omitted from subsequent analysis. 

AH, as defined by (4.2), may not be a useful variable for more general oceanographic analysis, but it 
is well suited to  tidal analysis. Omitting (e,  A )  for brevity, a harmonic tidal component 

SSH(t) = H cos ut 
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appears in AH as fH cos (w t - @), where 

f = 2 sin (w KT)/2, @ = (n - w KT)/2 (4.3) 

Values of f and @ for six leading harmonic tidal constituents, with K = 1, and 2 and T equal to the SEASAT 
repeat period, are listed in Table 7. The lunar constituents Q1, 01, N2, and M2 are enhanced in amplitude, 
while the solar constituents K1 and S2, being aliased into very low frequencies by the near-sun synchronism 
of the orbit, are conveniently suppressed. The corresponding lunar harmonic constituents in SSH(t) are, 
therefore, easily recovered from their values in AH(t) by applying welldefined adjustments to  amplitude 
and phase. 

We still have to consider the removal of error in the computed satellite orbit, which in the case of AH 
with K = 2 is, in effect, the difference in orbit error between two consecutive 6d arcs. Orbit error is known 
t o  have very long spatial scales, and the usual approach to limited areas of ocean is to subtract an arbitrary 
'bias and tilt' from each pass, calculated to minimize DH(t) or some set of crossover differences. Such meth- 
ods are not appropriate to the analysis of long wavelength oceanic phenomena over large ocean basins, be- 
cause some of the signal will be eliminated as part of the bias and tilt. (Woodworth and Cartwright (1980) 
describe methods of tidal analysis in which the small-scale tilt of DH is itself taken as the variable, thus par- 
tially removing the problem of bias.) We have tried a new approach in which a nearly sinusoidal form. 

E(t) = A(t)cos 52 t+ B(t) sinS2 t + C(t) (4.4) 

is optimally fitted to the variable 

A oH(t) = AH(t) - AH'(t) (4.5) 

where A, B, C, are slowly ranging arbitrary functions of time, CZ = 86 n/T. the 'orbital frequency' for SEA- 
SAT. and AH' is the difference in (Schwiderski) model ocean tide corresponding to  (4.2). 

I t  is well known that a large part of the orbit error is spectrally concentrated near the once-per-revo- 
lution frequency L?, but theoretical studies have shown that the spectrum is not an infinitesimally narrow 
line which would imply constant values of A, B, C for any arc or for each of a pair of arcs. It has also been 
suggested that A, B, and C could be represented with lowdegree polynomials over ephemeris arcs up to  7 
days long; Colombo (1984) has proposed using quadrics for A and B and somewhat higher-degree curves 
for C. We have compromised by evaluating the mean values of A, B, C. over all valid global data A 011 during 
sequences of three consecutive orbits; the origin o f t  taken centrally at an ascending equatorial crossing, and 
least-squares covariance matrices weighted by a cosine-taper window. A typical set of sequences of such 
values, evaluated with central origins at every consecutive orbit during the 6day  arc commencing 1978 
Sept. 17.0, is shown in Figure 7a. 

There is jitter in each sequence of coefficients, owing to  the irregular sampling of ocean track along 
each orbit, to the spasmodic fallout of data, and to areas of residual tide from inaccurate AH'; but distinct 
secular trends are obvious, justifying the general form (4.4). For definition of the orbit error E(t) to  be sub- 
tracted from every sample of AH(t), A, B, C were approximated by smooth polynomials u to the 4th 

by a continuous line never reaches zero, but vanes between about 0.5 and 1.0 meters. These figures accord 
with simple observations of cross-over differences in SSH from the PGSS4 orbit. 

order as depicted in Figure 7b. The curves .are clearly not linear, and the amplitude (A2 + B f )yz depicted 

Typical variances of the global data for AoH(t), before and after subtraction of E(t) from (4.4), are 
0.142 and 0.051m2 respectively, both figures beina averages over the same several samples. Note that the 
second, i.e., residual, variance is expected to be about twice the intrinsic variance of the sea surface (tide- 
reduced) because of the definition of AH (4.2). Within our interior Pacific area, the corresponding figures 
from 19,35 1 values of AoH(t) were 0.039 and 0.008m2, respectively. These figures compare satisfactorily 
with the typical rms residua1 sea surface, about 0.07m, deduced for the same area from the map of Cheney 
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and Marsh (1 983). The variance figures for this area after restoration of the tidal signal, that is, for A H  and 
for A H  - E, were 0.235 and 0,202m2. The tidal signal is clearly the dominant variation in our corrected data 
set. 

Choice of Tidal Time-Harmonics 

Sampling at a time interval T imposed by the satellite's orbit aliases the harmonic constituents of the 
tide, as sampled at any particular point on the ground track, into much longer periods Ta, (see, for exam- 
ple, Parke and Rao, 1983). The values of Ta in days for the dominant constituents are listed in the last 
column of Table 7. The duration of the repeated-track data, further reduced by effectively 6 days by the 
use of the variable AH (4.2), limits our data span available from analysis to  about 17.5d. From Table 7, this 
covers a little more than one complete cycle of MI? or  01 and a little less than two complete cycles of Nz 
and Q 1. Only a small fraction of a cycle of S2 and K1 is covered, but these and other solar constituents may 
be ignored due to  their small f factors. 

One cycle of oscillation makes a rather poor sample for harmonic analysis at an individual point, but 
the use of spatial basis functions greatly improves the sampling efficiency by relating data along and between 
tracks. The spatial sequence of tracks presents additional cycles of phase change. By a similar process, the 
diurnal and semidiurnal tides, which have rather similar values of T,, are decoupled by including both ascend- 
ing and descending tracks in the same spatial scheme. (The correction E(t) (4.4) is also very relevant to  the 
latter case). 

In order not to overburden our analysis scheme with too many unknown parameters, we linked N z  and 
Mz as an anomalistic monthly variation of arbitrary amplitude and phase, and linked Q 1 and 0 1 in a similar 
fashion. In exact terms, instead of seeking a solution for M2 in the form 

C (An ( e ,  A )  cosw t + Bn ( 0 ,  A )  sinw t) 
n 

we replace cosw t, sinw t by 

c(t) = u(t) cosw t + P(t) sinw t, s(t) = a( t )  sinw t - P(t) cosw t 

~ respectively, where 

u(t) = 1 + E  cos (6 t - 7 )  

P(t) = E sin (6 t - y )  

6 = 2n/27.555 d-1 

(4.6) 

(4.7) 
E ,  y are assigned constants. 

The elliptical modulation corresponding to the 'equilibrium tide' would give E = 0.191, y = 0 for both N2 
relative to M-, and Q1 relative to  01. A simple analysis of the relationships between these constituents in 
Schwiderski's model for the area of the Pacific Ocean gave 

E = 0.20, 7 = 22" for M2, 
E = 0.21, y = 8" for01,  

both results having coherence greater than 0.9. We used these numerical values with (4.6,4.7) in all the fol- 
lowing analyses. 

We have thas reduced the number of tidal constituents which are relevant to  this data set to one semi- 
diurnal and one diurnal harmonic with independent parameters to be assigned by least-squares analysis. All 
previous tidal analyses of SEASAT altimetry have ignored the diurnal tides, We have retained them because 
the diurnal tides in the Pacific are larger than elsewhere with respect to the semidiurnal tides, and also be- 
cause our procedures for removing the geoid and orbit errors are much better than in any other published 
exercise of this kind. 

16 



Table 7. Magnifications and Phase Lags (Equations 4.2,4.3) 

Darwin 
Symbol 

Cd/2iT K = l  
cycles d- f 4 O  

0.8932 1.6624 -33.78 
0.9295 1.1916 -53.43 
1.0027 - 0.1074 -93.08 
1.8960 - 1.6004 143.15 
1.9323 - 1.1036 123.49 
2.0000 0.1 112 86.81 

K = 2  
f 4 O  

- 1.8484 202.45 
-1.9140 163.14 

0.2144 83.85 
- 1.9 197 196.30 
- 1.8408 156.98 

0.222 1 83.62 

Ta 
Days 

9.6 
14.8 

176.4 
10.1 
16.4 

171.1 

Expansion in Proudman Functions 

Formally, we evaluate the set of coefficients ai,.,, bl,n, a2,n, b?,’n, n = 0(1) N - 1. which minimizes 
the mean square value of 

(4.8) 

over the space and time parameters (e, A,  t )  determined by the altimetry. Here, ci and si are the modulated 
harmonic functions defined by (4.6), .with constants particular to tidal species i, and Pn, the computed 
Proudman functions of order n, including the ‘constant’ function of order zero and other values n increas- 
ing with ‘non-rotating frequency’ of the eigenfunction (Sanchez et al., 1986). 

By standard theory (4.8) gives rise to  a set of normal linear equations for the 4 N  parameters ai,n, b. 
which are solved by inverting a non-singular matrix of order 4N x 4N. A sequence of trial values N were trika 
up to N = 100, giving rise to pairs of variances v.(N), each being the contributions of the terms pertaining 
to tidal species i to the total variance V of AH, when N orders of Proudman functions are used. The residual 
variance of (4.8) is V - v1 - v2, and this, in general, decreases monotonically with N toward an asymptote 
representing the residual noise in the data AH. 

Results 

Figure 8a shows the variance vg, split into partial components vc7, vs2 associated with the functions 
c,(t), s2(t) respectively, from solution of the complete set of normal equations from (4.8), with N increasing 
fFom 5 t o  100 in steps of 5 .  The ratio vc2:vs2 depends on the time origin and is of no interest per se, but 

vc2+vs2 = v2 

would be independent of time and is the variance (scaled in cm2) contributed by semidiurnal terms. The 
total data variance V = 2020 cm2. 

As is usual i’n such leastsquares fitting, the partial variances v increase rapidly for small values of N, 
then increase more slowly. Occasional slight decreases of v with N are due to  numerical deficiencies in the 
matrix inversion procedure. It is hard to decide exactly for which value of N, further increase is unprofit- 
able; ultimately, the addition of higher-order functions merely tries to fit noise in the data with increas- 
ing ‘wiggliness’. A sign .of over-fitting in this way is the appearance of large numerical values in the list of 
coefficients ai n, bi,n., Taking this factor into account, as well as the values in Figure 8a, resulted in the 
choice df N = 50 as the largest reasonable compromise. 
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The corresponding values vCl , vsl, for the diurnal tide are depicted in Figure 8b, with scale increased 
by 10. These v1 components are appropriately much smaller than the v2 components, and numerical noise 
is more evident at the larger scale. The large irregularities are clearly associated with similar irregularities 
in the vq variances, and are evidently compensating for them. However, the same sort of general increase of 
v1 with fJ is apparent, and from similar reasoning, the choice N = 50 is a sensible compromise, giving 

v1 = 99, v2 = 1576, V-v1  - v 2  = 345 cm 2 . 

If we had chosen N = 90, which was also considered, the corresponding variances would be 106, 1598, and 
3 16 cm2, respectively. 

It is interesting that the diurnal variance v1 is considerably less than the residual noise variance 
V - v1 - v2. This is due to  the space-time filtering implicit in the normal equations, and is analogous to the 
extraction of a small but significant peak from a spectrum of noisy data. The energy of a spectral peak may 
be much less than the total energy across the whole spectrum. In other words, the residual noise in this case 
is concentrated in much higher wave numbers and frequencies than can be accommodated by Proudman 
functions of order up to  n = 100 or  thereabouts, with tidal periodicities. 

The standard tidal amplitudes and (Greenwich) phase lags Hi = (e, A). Gi (0, A )  are given by 

Hi = (A2i + B2i)s/ fi, Gi = arctan (Bi/Ai) - Qi + Q'i 

N- 1 

(4.9) 

n=O 

and fi, Q~ are the adjustments for conversion from AH to SSH (4.2, 4.3) with a small additional correction 
for the 1 8 . 6 ~  modulation of the tide potential. Q ' ~  is the phase of the harmonic potential concerned, 01 or 
M,, - at the time t = 0 used in the computations. 

Contour plots of H., Gi computed by (4.9) from the solutions for N = 50 are depicted in Figures 9a 
and 9b. Comparison of kgure 9a with the Schwiderski model Mq, (Figure 5a). shows a high degree of sim- 
ilarity; the principal features being two large zones of maximum implitude near the Equator and two zones 
of even greater amplitude coastal maximum in the Gulfs of Panama and Alaska, interspersed with four cen- 
tral amphidromes and a nearly amphidromic minimum in the north near 190'E. Figure 9a also reproduces 
the amphidrome east of Papua, New Guinea, but transforms the region of low amplitude southwest of 
Japan in Figure 5a into a true amphidrome. Schwiderski's map suggests that the two central maxima have 
about equal amplitude of 5 5  cm. The SEASAT/Proudman function analysis gives the maximum near 230'E 
larger amplitude. The differences between Figures 5a and 9a are quite minor and neither can claim perfect 
accuracy anyway. 

The satellite solution for 01 (Figure 9b) again agrees in broad features with the Schwiderski solution 
(Figure 5b). This is even more remarkable, considering the generally lower amplitudes everywhere. We will 
not enlarge on the few points of dissimilarity, which are trivial. The fact that we can obtain any reasonable 
approximation to the 01 map with the observed noise background is an excellent indication of the methods 
of analysis used, and promises well for future results from the much longer series of altimeter data now be- 
coming available. 

Comparison of the distribution of potential energy among the Proudman mode numbers n deduced 
from the above solutions with those presented in Table 6 is less satisfactory. Mode n = 4, with rotational 
period 21.61h, again has the largest contribution to  both M2 and 01, and some of the other modes listed 
in Table 6 also appear in the top ten here, but with different ranks. Other modes appear in the present solu- 
tion which d o  not appear in Table 6, and the distribution varies rather erratically with different values of 
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N in (4.8). The nonorthogonality of the Proudman functions over the reduced Pacific area used here, to- 
gether with the noise background, must cause aliasing between different modes, making the distribution 
of potential energy with n being rather meaningless in this case. 

Expansion in Spherical Harmonics 

In order to  assess the relative merits of expanding the tidal fields in Proudman functions and in spheri- 
cal harmonics, we also analvzed the same altimetry data described in (4.1) through (4.3) by solving the 
normal equations for a'n, b',,, which minimize the mean square value of 

(4.10) 

where the modulated harmonic functions ci, si are the same as used in (4.8). Qn (e, A )  represents an ordered 
set of the real and imaginary parts of Associated Legendre Polynomials of degree 1, order m, 

(4.1 1)  

PQm(x) being the common Legendre polynomial, and the sequence of (1,  m) corresponding to n = 0, 1, 2, ... 
being 

(0,O) (l,O), R(1,1) I ( l , l ) ,  (2.0) R(2,l) K2,1), . . . 

with R, I denoting real or imaginary parts. Complete coverage up to degree and order k - 1 requires N = k2. 
Thus, N = 100 covers harmonics up to degree and order 9, while N = 50 covers degree and order 6 with the 
addition of Y70. 

The coefficients a', b' in (4.10) were solved in a very similar manner to a, b in (4.8) using the same se- 
quence of N. Results for the partial variances v'1, v', - are qualitatively similar to  those for the analogous 
v 1, v2, except that numerical variation with increasing N is distinctly greater: probably due to greater correla- 
tion between spherical harmonics over the area considered-very much less than the whole sphere. However, 
v'1 and v'2 are, on the average, slightly less, as in the typical comparisons listed in Table 8. 

Table 8. Comparison of Predicted Variances (an2) 

Proudman Functions Spherical Harmonics 
v8 1 +v', N v1 v2 Vl+V2 V'1 "'2 - 

20 94 1449 1543 88 1275 1343 
40 93 1570 1663 93 1537 1630 
60 101 1582 1683 101 1560 1661 
80 103 1579 1682 101 1570 1671 

100 100 1579 1679 98 1584 1682 

Whether the slight improvements in predicted variance achieved by fitting the same number N of Proud- 
man functions are significant would be hard to  say. Significant improvement must be felt mainly in the iml 
proved matching of the Proudman functions to  the coastal configuration and bathymetry, but our reduced 
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area excludes the regions where these factors are important for other reasons. Maps of H, G computed from 
the coefficients a', b' look too similar to  Figures 9a and 9b to be worth reproducing here, but there are quali- 
tative signs that the advantage afforded by the Proudman function expansion is indeed in the sea areas close 
to the boundaries of the chosen area. Further experiments with longer altimeter data sets in other ocean 
areas will be needed before one can finally decide whether the advantages of Proudman functions outweigh 
the computational effort required to produce them. 

Conclusions 

This paper brings together two areas of research; one consisting of the computation of Proudman func- 
tions and their associated normal modes in large ocean basins (Sanchez et al., 1986), the other exploring 
methods of extraction of ocean tides from satellite altimetric data (Woodworth and Cartwright, 1986). 

The Pacific Ocean, considered here as a closed basin, has the usual wide spectrum of eigenfrequen- 
cies, with gravitational natural periods from 43.9h to 3%. Some of the normal modes spatially resemble 
those computed by Platzman, et al. (1981) for a global ocean, although closure of the connected region en- 
circling Antarctica prevents too close a comparison in frequency. 

As in other approaches to  tidal modeling, the diurnal and semidiurnal maps resulting from direct dynam- 
ic solution are only qualitatively good, partly due to  the lack of friction and other unmodeled physical fac- 
tors. Much closer agreement with the known features of the ocean tidal maps is obtained when the Proud- 
man functions are constrained to a least-squares fit to empirical data, as represented by Schwiderski's models. 
It might be suggested that the degree of fit with 200 Proudman functions shown in Figures 6aand 6b could 
be matched with any set of orthogonal spatial functions, but Table 4 shows that the approximation is much 
better than wiih an equivalent number of spherical harmonics. This result clearly reflects the advantages of 
using the kinematic constraints embodied in the Proudman functions, which are totally lacking in spherical 
harmonics. 

Modeling the tidal signal in the altimetry by Proudman functions is more limited by the noise level of the 
data, but the maps obtained with only 50 functions, (Figures 9a and 9b). are encouragingly close to the 
Schwiderski maps based on tide-gauge data, and are marpnally but significantly better than the fit with the 
same number of spherical harmonics. It is particularly encouraging to see a plausible map for the low ampli- 
tude 01 component emerge from barely 17 days of SEASAT altimetry. Several months of altimetric data 
were previously thought to  be necessary to separate the aliased diurnal and semidiurnal constituents. The 
present result must be at least partially due to  the improved methods of geoidal and orbital noise reduction 
employed here. In general, these results promise well for future applications of similar methods to  altimetric 
data of much longer duration (GEOSAT, ERS-1, TOPEX-POSEIDON), using Proudman functions computed 
for the global ocean. 
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